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1. Summary

« We propose an effective pre
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-training method based on Formula-SED,

audio data synthesized solely from mathematical formulas.
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4. Experimental Evaluation

Experimental setting
Pre-training Dataset:
« Audioset data w/ Strong labels (80k) [2] _

 Formula-SED (ours) {50k,
Downstream Task: DCASE 2023, task 4 (DESED dataset) .
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3. Formula-Driven Acoustic Supervised Learning

3-A. Parametric Sound Event Synthesis

3-B. Parameter Generation with Gaussian Processes

- Gaussian processes are used to stochastically represent smoothness.
- Correlation between harmonic and inharmonic component are expressed by

ICM (Intrinsic Coregionalization Model) [1]
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Quantitative Comparison
- Downstream accuracy Is improved by pre-training using the proposed dataset (Tab 1).
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Pre-training Label Analysis

For CRNN baseline, our pre-training method outperformed real but noisy AudioSet.
The training curve shows our pre-training method speeds up fine-tuning convergence.

Formula-SED consists of finite set of synthesis params.
We investigate which audio parameters are crucial.

@ FO-related params @ Reverberation

In the baseline CRNN, accuracy improved monotonically with the increase in the pre-training data scale |
Evaluation metrics: PSDS1, 2, Event-F1, Inersection-F1 (Tab 2). 0.4
Table1. Accuracy comparison Table2. The impact of pre-training dataset size 03
Model PSDS1 PSDS2 E-F1(%) I-F1(%) . Model Size | PSDS1 PSDS2 E-F1(%) I-F1(%) L
CRNN baseline [3] 0.352 0.579 45.7 65.8 C?) CRNN basel@ne 50k 0.380 0.620 49 4 70.8 EJ 0.2 (‘ All ‘ Global FO ‘ Noise Distribution\
w/ Forngula—SED (100k) 0405 0.641 49.6 72.3 A 0.2 CRNN basel}ne 100k | 0.405 0.641 49.6 72.3 ® Local FO Envelope Sharpness
w/ Audioset Strong (79k) [2] 0.387  0.618 47.7 70.7 P ——— CRNN baseline IM | 0420 0.653 S51.4 72.8 0.1 @ Harmonic Envelope
0.1 :
Paderborn CRNN [4] 0.262  0.506 34.9 57.3 T ?g?rfj:tSED Paderborn CRNN | 50k | 0.288  0.553 35.8 62.4 \ Reverb Strength @ Harmonic/Noise Corr
w/ Formula-SED (100k) 0.278  0.539 35.3 59.4 i h — Paderborn CRNN | 100k | 0.278  0.539 35.3 59.4 step
w/ Audioset Strong (79k) [2] | 0.355  0.622 439 67.8 o 4000  sooo 12000 °°P  paderborn CRNN | IM | 0304 0552 371 614 0 4000 8000 12000

Training curve Training curve per pre-training labels

5. Future work 7. Contact

_ _ 1] E. V. Bonlilla, K. Chai, and C. Williams, “Multi-task gaussian process prediction,” NIPS, vol. 20, 2007.
- Evaluate the effectiveness of our Formula-SED for various tasks beyond 2] S. Hershey et al, “The benefit of temporally-strong labels in audio event classification,” ICASSP, pp. 366—370, 2021.
sound. event detectlen. | 3] M. Fuentes et al, DCASE 202:2 Tampere, Finland: Tampere University, September 2023. ” Yuto Shibata : yuto071508@keio.jp
- Investigate the relationship between label thresholds and downstream 4] J.EbbersandR.Haeb-Umbach, Pre-trainingandself-trainingforsound event detection in domestic environments,” Tech.
accuracy. Rep. of DCASE 2022 Challenge Task 4, 2022.
5] Mesaros et al. "Sound event detection: A tutorial." IEEE Signal Processing Magazine 38.5 (2021): 67-83.




	Slide 1

