

*Keio University, Japan

1. Summary

2. Background

Sound Event Detection (SED):

Experimental setting

Pre-training Dataset:

• Audioset data w/ Strong labels (80k) [2]

Formula-SED (ours) {50k, 100k, 1M}

Downstream Task: DCASE 2023, task 4 (DESED dataset) Evaluation metrics: PSDS1, 2, Event-F1, Inersection-F1

Table1. Accuracy comparison							lable2. The impact of pre-training dataset size						
Model	PSDS1	PSDS2	E-F1(%)	I-F1(%)	0.3	Man Martin Martin Martin	Model	Size	PSDS1	PSDS2	E-F1(%)	I-F1(%)	т Т Т
CRNN baseline [3] w/ Formula-SED (100k) w/ Audioset Strong (79k) [2]	0.352 0.405 0.387	0.579 0.641 0.618	45.7 49.6 47.7	65.8 72.3 70.7	SOS 0.2	Random	CRNN baseline CRNN baseline CRNN baseline	50k 100k 1M	0.380 0.405 0.420	0.620 0.641 0.653	49.4 49.6 51.4	70.8 72.3 72.8	Even
Paderborn CRNN [4] w/ Formula-SED (100k) w/ Audioset Strong (79k) [2]	0.262 0.278 0.355	0.506 0.539 0.622	34.9 35.3 43.9	57.3 59.4 67.8	0.1 0.0 0	Audioset Formula-SED 4000 8000 12000 step Training curve	Paderborn CRNN Paderborn CRNN Paderborn CRNN	50k 100k 1M	0.288 0.278 0.304	0.553 0.539 0.552	35.8 35.3 37.1	62.4 59.4 61.4	
5. Future work						6. Reference							
Evaluate the effectiveness of our Formula-SED for various tasks beyond sound event detection.						 [1] E. V. Bonilla, K. Chai, and C. Williams, "Multi-task gaussian process prediction," NIPS, vol. 20, 2007. [2] S. Hershey et al, "The benefit of temporally-strong labels in audio event classification," ICASSP, pp. 366– [3] M. Fuentes et al, DCASE 2023, Tampere, Finland: Tampere University, September 2023. 							

- Investigate the relationship between label thresholds and downstream accuracy.

Formula-Supervised Sound Event Detection: Pre-Training Without Real Data Yuto Shibata*[†], Keitaro Tanaka[†][‡], Yoshiaki Bando[†], Keisuke Imoto[†]§, Hirokatsu Kataoka[†]¶, and Yoshimitsu Aoki

*National Institute of Advanced Industrial Science and Technology (AIST), Japan

- Downstream accuracy is improved by pre-training using the proposed dataset (Tab 1).
- For CRNN baseline, our pre-training method outperformed real but noisy AudioSet.
- The training curve shows our pre-training method speeds up fine-tuning convergence.
- In the baseline CRNN, accuracy improved monotonically with the increase in the pre-training data scale (Tab 2).

-370, 2021. Yuto Shibata : yuto071508@keio.jp [4] J.EbbersandR.Haeb-Umbach, "Pre-trainingandself-trainingforsound event detection in domestic environments," Tech. Rep. of DCASE 2022 Challenge Task 4, 2022. [5] Mesaros et al. "Sound event detection: A tutorial." *IEEE Signal Processing Magazine* 38.5 (2021): 67-83.

[‡]Waseda University, Japan §Doshisha University, Japan

¶University of Oxford, United Kingdom

Project page

Generated Data Samples File 2, # Events = 2 File 4, # Events = 3 File 5, # Events = 3 File 7, # Events = 1 File 8, # Events = 1 File 11, # Events = 1 File 10, # Events = 1 ______ time [s] time [s]

Pre-training Label Analysis

0.4

0.3

0.2

0.1

- Formula-SED consists of finite set of synthesis params. - We investigate which audio parameters are crucial. • F0-related params Reverberation

